

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER: (客戶):志盛翔

DATE: (日期):2017-03-13

CATEGORY (品名)		ALUI	MINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	:	GT	50V470µF(φ10X20)
VERSION (版本)	:	01	
Customer P/N	:		
SUPPLIER	:		

SUPPI	LIER	CUSTOMER				
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	ム SIGNATURE (签名)			
李婷	王国华					

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		SPECIFICAT	ALTERNATION HISTORY RECORDS				
Rev.	Date	GT SERIE Mark	ES Page	Contents	Purpose	Drafter	Approver
Kev.	Date	Widik	1 age	Contents	T urpose	Dianci	Approver

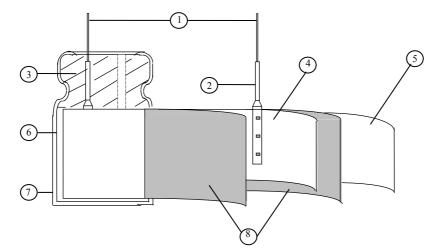
	MAN YUE ELECTR COMPANY LIMI				ELEC CA SPEC GT		SAMXON							
Tabl		sions a	and Ch	aracteristic	28						Unit: n	ım		
	Safety vent for $\geq \Phi$ 6.3		5 min	$\frac{\oint \Phi}{4 \min} d\pm 0.03$	5 -	ΦD-0.5	F±0.5	β Φ * If it is	20 : α=1.5; D<20 : β = flat rubbe urface.	0.5; ΦD≥:		from th	e flat r	ubber
N o.	SAMXON Part No.	WV (Vdc)	Cap. (µF)	Cap. tolerance	Temp. range(℃)	tanδ (120Hz, 20℃)	Leakage Current (µA,2min)	Max Ripple Current at 105°C 100kHz (mA rms)	Impedance at 20°C 100kHz (Ωmax)	Load lifetime (Hrs)		ension (mm) F	фd	- Sleev e
								. /			-			

-				
	Version	01	Page	2

1. Application		Sheet
	n	4
2. Part Numb		4
3. Constructio		5
4. Characteris	stics	5~10
4.1 Rated voltage &	k Surge voltage	5~10
4.2 Capacitance (T	olerance)	
4.3 Leakage curren		
4.4 tan δ		
4.5 Terminal streng	gth	
4.6 Temperature cl	haracteristic	
4.7 Load life test		
4.8 Shelf life tes	t	
4.9 Surge test		
4.10 Vibration		
4.11 Solderabilit	ty test	
4.12 Resistance		
4.13 Change of t	-	
4.14 Damp heat 1	test	
4.15 Vent test	nissible (ripple current)	
	ronment-related Substances to be Controlled ('Controlled	ed 11
	pplication Guidelines	12~15

Version	01		Page	3
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES


This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Description applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Bar Annue System Top Top Top Top Top Top Top Top Top Top	1.												
2. Part Number System 1 2 3 4 5 6 7 EGGS 0APACITANCE NTLL 0 1 104 5 6 7 CAPACITANCE NTLL 0 1 104 5 6 7 0 1 104 5 7 0 1 105 7 0 105 7 0 10								lytic ca	apacitor (1	on type) u	seu n	ii electronic equij	pinent.
E.G.S. 10.5 M TOL Output CARE Diff TOL Output Color Diff TOL Diff TOL Diff TOL Diff TOL Diff D	2.		-		1 2								
DERNES CARACTIVANCE TOL. VOLTAGE CASE BIZE TYPE PLANTON INFERIAL Series CapACITANCE TOL. VOLTAGE CASE BIZE TYPE PLANTON INFERIAL Series CapACITANCE 104 2 0.01 104 1 104 ESS 0.22 224 ±10 K 63.00 4.00 <t< td=""><td>Ľ</td><td>1 2</td><td>3 4</td><td>56</td><td>3 7</td><td>]</td><td>89</td><td>[</td><td>10 11 12</td><td>2 13</td><td>14</td><td>1516</td><td>17</td></t<>	Ľ	1 2	3 4	56	3 7]	89	[10 11 12	2 13	14	1516	17
Series Exp Code 0.1 Tolerance (%) 1.0 Code 1.5 Voltage (WV) 2.6 Code 0.5 Case Status 3.3 Feature 7.0 Code 7.4 Code 0.1 SAUCON Product Line (manual use only (manual use on	E	EG	<u>s 1</u>	0 5	<u>5 M</u>		<u>1 H</u>		D 1 1	<u> </u>	С	SA	Ρ
BRN 0.1 104 ±.5 J 2 0.0 Newsware Pada buk FR Pada buk FR BRS 0.22 2.24 a10 K 8.3 C Arrow Taylo Arr		SERIES	CAP		CE TO		VOLTAGE	-	CASE SIZE	TYP			
EVE 0.1 104 ±.5 J 2.5 0.2 3.5 Padia bulk Padia bul			Cap(MFD)	Code	Tolerance (%)	Code				Feature	Code	SAMXON Product Li	ne
EXC 0.33 334 ±10 K 0.0 0.0 0.3 <th0.3< th=""> <th0.3< th=""> <th0.3< th=""></th0.3<></th0.3<></th0.3<>	F	EKF	0.1	104	±5	J	2.5	0E	3 B	Radial bulk	RR		
BKC EXT 0.33 334 ±15 L 8 0K 8 E C C/mm <pich< th=""> TT EXT 0.47 474 ±15 L 125 13 1 23 1 23mm<pich< td=""> 1 105 ±20 M 200 10 145 A 35mm<pich< td=""> TV 5mm<pich< td=""> TV 5mm<pich< td=""> TV 5mm<pich< td=""> PET P <t< td=""><td>F</td><td>EGS</td><td>0.22</td><td>224</td><td>±10</td><td>к</td><td>6.3</td><td>OJ</td><td>4 C 5 D 6.3 E</td><td>Ammo Tap</td><td>aing</td><td></td><td></td></t<></pich<></pich<></pich<></pich<></pich<></pich<>	F	EGS	0.22	224	±10	к	6.3	OJ	4 C 5 D 6.3 E	Ammo Tap	aing		
E25 FGC 0.47 474 125 18 33 4 2.5mm Plch TU 607 1 105 #20 M 20 10 14.5 4 3 4	E	EKG EOM	0.33	334	. 45		1	1A	8 F 10 G	2.0mm Pitch	Π		
EGY EGO EGO EGO EGO EGO EGO EGO EGO EGO EGO	F	EZS	0.47	474	±15	-			13 J 13.5 V	2.5mm Pitch	тυ		
EGC 2.2 225 ±30 N 30 11 155 7 Domm Plich TC PET P EGS 3.3 335 40 W 35 11V 105 1 Lead Cut & Form Lead Cut & Form CE-Type CE CE <type< td=""> CE CE<type< td=""> CE CE</type<></type<></type<></type<></type<></type<></type<></type<></type<></type<></type<></type<></type<></type<></type<></type<></type<></type<>	F	EGT	1	105	±20	м			14.5 A	3.5mm Pitch	т∨	Sleeve Material	Code
ERS 3.3 335 -40 W 35 1V 22 M Lead Cut & Form ERR 4.7 475 -20 A 850 11H 35 0 CE 775 11 355 19 CE 775 11 355 19 CE 775 11 655 19 CE 797 11 100 775 11 655 15 65 18 100 20 775 11 655 130 20 775 100 22 20 X 775 11 655 130 20 70	E	EGE EGD	2.2	225	±30	N			18 L	5.0mm Pitch	тс	PET	Р
EED ERD ERD ERD ERD ERD ERD ERD ERD ERD	F	ERS	3.3	335	-40 0	w	35	1V	20 M 22 N		Form		
EED ERD ERD ERD ERD ERD ERD ERD ERD ERD	F	ERR	4.7	475	-20	A	42	1 M	25 O 30 P 34 W	СВ-Туре	СВ		
ERC EAP EAP EAP EAP EAP EAP EAP EAP EAP EAP	E	ERE	10	106	<u> </u>		57	1L	35 Q 40 R	СЕ-Туре	CE		
ERC EAP EAP EAP EAP EAP EAP EAP EAP EAP EAP	F	EBD	22	228		С	71	15	45 6 51 S	HE-Type	HE		
ERW ELP 100 107 -10 0 B 100 2A Handbox 5 EH-Type EH ELP 220 227 -10 -20 V 125 226 77	E	ERB ERC	33	336	-20 +40	×	80	1K	63.5 I 76 U 80 8	КД-Турө	КD		
ERV E 100 107 -10 B 100 220 227 -10 C B 120 220 EH-Type EH EOP EOP 220 227 -10 V 150 22 54 54 56 66 FH-Type EH EOP ETP 330 337 -10 Q 180 220 12 13 13 13 13 13 13 13 13 13 13 13	E	ENP	47	476	-20 +50	s	90	19	90 X 100 Z	FD-Type	FD		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ŀ	ERY	100	107	-10 0	в		20	4.5 45 5 05	ЕН-Туре	EH		
ETP EUP 330 337 -10 Q 160 2C 102 12 12 12 SNW EUP 470 477 477 -10 T 2200 228 -10 220 220 228 -10 -10 -10 200 20 22 5 -10 220 20 228 -10 -10 -10 200 22 12.3 13.5 12.2 13.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 50 10 <td< td=""><td>E</td><td>EQP</td><td>220</td><td>227</td><td>-10 +20</td><td>v</td><td></td><td></td><td>7.7 77</td><td>PCB Tem</td><td>nial</td><td></td><td></td></td<>	E	EQP	220	227	-10 +20	v			7.7 77	PCB Tem	nial		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	E	ETP	330	337		Q			11 11		sw		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	F	EKP	470	477		т			12 12 12.5 1B	Snap-in	sx		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	E	EFP ESP	2200	228					13.5 10		sz		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	E	EGP EWR	22000	229			250	2E	25 25 29.5 2J 30 30	Lug	SG		
EWF EWKS EWH EWH EWH EWH EWH EWH EWH EWH EWH EWH		EWT	33000	339			300	21	31.5 3A 35 35		05		
EWVL EWB VSS VNS VNS VNS VNS VNS VNS VNS VNS VNS	E	EWF	47000	479			315	2F	50 50 80 80		06		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E	EWL	100000	10T	+20		350	2V	105 1K	Screw	т5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	F	VNS	150000	15T	+30		375	2Q	120 1N 130 1P		т6		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E	VKM	220000	227	+50		400	2G	150 1R 155 1E		D5		
+20 D 500 2H 180 1U 1000000 10M +20 D 550 25 190 1V 1500000 15M +10 +50 Y 600 26 215 2A 1500000 15M +10 +1 630 2J 220 2N 2200000 22M +10 H 220 2N 250 2R 3300000 33M	E	VZS	330000	33Т	+15	z	450	2W	165 1F 170 1T		D6		
3300000 33M			1000000	10M	+20		550	25	180 111				
3300000 33M			1500000	15M	+50				215 2A 210 2M				
3300000 33M			2200000	22M	+30	н			240 20 250 2R				
			3300000	33M					260 28 270 2T				

Version 01 Page 4

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	РЕТ
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01		Ρασρ	5
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

	ITEM	PERFORMANCE								
	Rated voltage (WV)									
4.1		WV (V.DC)	6.3	10	16	25	35	50	63	100
	Surge voltage (SV)	SV (V.DC)	8	13	20	32	44	63	79	125
4.2	Nominal capacitance (Tolerance)	Condition> Measuring F Measuring V Measuring T <criteria> Shall be with</criteria>	requency oltage emperat	: N ure : 20	0 Hz \pm 12 ot more t $)\pm$ 2°C apacitanc	han 0.5V				
4.3	Leakage current	<condition> Connecting t minutes, and <criteria> Refer to Tabl</criteria></condition>	he capae then, me		-		istor (1	$k \Omega \pm 10$)Ω) in s	eries for 2
4.4	tan δ	<condition> See 4.2, Nor <criteria> Refer to Tabl</criteria></condition>	m Capac	itance, fo	or measur	ing frequ	iency, vo	oltage an	d tempera	ature.
4.5	Terminal strength	0.51 Over 0.	ength of capacitor rength of apacitor, $2\sim3$ secc ter of lea mm and 1 5mm to a >	r, applied f Termina applied f onds, and d wire less 0.8mm	force to bother than the force to bother to bother the force to bother the force to bo	ent the te t it for 9 ile force (kgf) (0.51) 0(1.0)	erminal (0° to its N	l~4 mm original Bending (k 2.5 (5 (0	from the position g force N gf) 0.25) 0.51)	rubber) for

Version	01	Page	6

		<condition> STEP</condition>	Testin	o Tempe	erature(°C)			Time		
		1	i estili	20 ± 2		Time	to reach	thermal e	auilibri	um
		2		-40(-25)				thermal e	-	
		3		$\frac{-40(-23)}{20\pm 2}$				thermal e		
		4		$\frac{20 \pm 2}{105 \pm 105 \pm 105}$				thermal e	•	
				$\frac{103\pm}{20\pm2}$					1	
		5		20 ± 2	2	Time	to reach	thermal e	equilibri	um
		<criteria></criteria>	ha withi	in the lim	it of Itom	4 4Tha la	alvaga a	rrant ma	agurad	hall not
		a. tan δ shall more than 8 ti				+.4111010	akage ci		asureu	shan not
	Temperature	b. In step 5, t		-		it of Iter	n 4 4The	leakage	current	shall not
	characteristi	more than the					u 4.4111 c	Теакаде	current	Shull not
4.6	cs	c. At-40°C (-2			e (z) ratio s	hall not e	exceed th	e value o	of the fo	llowing
		table.	/)	r	()					0
		Working Volta	ge (V)	6.3	10	16	25	35	50	63
		Z-25°C/Z+2	• • •	4	3	2	2	2	2	2
		Z-40°C/Z+2	0°C	8	6	4	3	3	3	3
					1 <u>1</u>				I	1
		Working Volta		100	-					
		Z-25°C/Z+2		2	-					
		Z-40°C/Z+2	0°C	3						
		For capacitanc	e value >	> 1000 µ	F Add 0.4	ner ano	ther 1000) µ F for	Z - 25/Z -	⊦20°C
						-				
						-		μ F for Z		
		Capacitance, ta	n δ , and	l impedar	Add 1.0	per anot	her 1000	μ F for Z		
		-	n δ , and	l impedar	Add 1.0	per anot	her 1000	μ F for Z		
		<condition></condition>		-	Add 1.0	per anot e measur	her 1000 ed at 120	μ F for 2)Hz.	Z-40℃/	Z+20°C.
		<condition> According to I</condition>	EC60384	4-4No.4.	Add 1.0 nce shall b	per anot e measur s, The ca	her 1000 ed at 120 pacitor is) µ F for 2)Hz. s stored a	Z-40°C/	Z+20°C.
		Condition> According to I 105°C ±2 wit	EC60384 h DC bia	4-4No.4. as voltage	Add 1.0 nce shall b 13 method e plus the r	per anot e measur s, The ca ated ripp	her 1000 ed at 120 pacitor is le curren	μ F for Z Hz. s stored a t for Tab	Z-40°C/	Z+20°C. perature o The sum o
		Condition> According to I 105°C ±2 wit DC and ripple	EC60384 h DC bia e peak v	4-4No.4. as voltage roltage sh	Add 1.0 nce shall b 13 method e plus the r hall not ex	per anot e measur s, The ca ated ripp cceed the	her 1000 ed at 120 pacitor is le curren e rated w	μ F for 2 DHz. s stored a t for Tab yorking y	Z-40°C/. at a temp ble 1. (T voltage)	Z+20°C. Derature o The sum o Then the
	Load	Condition> According to I 105°C ±2 wit	EC60384 h DC bia e peak v l be teste	4-4No.4. as voltage voltage sh ed after 16	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec	per anot e measur s, The ca ated ripp cceed the	her 1000 ed at 120 pacitor is le curren e rated w	μ F for 2 DHz. s stored a t for Tab yorking y	Z-40°C/. at a temp ble 1. (T voltage)	Z+20°C. Derature o The sum o Then the
4.7	Load life	Condition> According to I 105°C ± 2 wit DC and ripple product should result should n <criteria></criteria>	EC60384 h DC bia e peak v l be teste neet the t	4-4No.4. as voltage voltage sh od after 16 following	Add 1.0 nce shall be 13 method e plus the r hall not ex 6 hours rec g table:	s, The ca ated ripp cceed the overing t	her 1000 ed at 120 pacitor is le curren rated w ime at at	μ F for 2 DHz. s stored a t for Tab yorking v	Z-40°C/. at a temp ble 1. (T voltage)	Z+20°C. Derature o The sum o Then the
4.7		Condition> According to I 105°C ±2 wit DC and ripple product should result should n	EC60384 h DC bia e peak v l be teste neet the t	4-4No.4. as voltage voltage sh od after 16 following	Add 1.0 nce shall be 13 method e plus the r hall not ex 6 hours rec g table:	s, The ca ated ripp cceed the overing t	her 1000 ed at 120 pacitor is le curren rated w ime at at	μ F for 2 DHz. s stored a t for Tab yorking v	Z-40°C/. at a temp ble 1. (T voltage)	Z+20°C. Derature o The sum o Then the
4.7	life	Condition> According to I 105°C ± 2 wit DC and ripple product should result should n <criteria> The characteria</criteria>	EC60384 h DC bia e peak v l be teste neet the t	4-4No.4. as voltage roltage sh ad after 10 following <u>1 meet th</u>	Add 1.0 nce shall be 13 method e plus the r hall not ex 6 hours rec g table:	per anot e measur s, The ca ated ripp acced the overing t g require	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments.	μ F for Z http://www.stored.ac. t for Tabyorking with the store of	Z-40°C/. at a temp ble 1. (T voltage)	Z+20°C. Derature o The sum o Then the
4.7	life	Condition> According to I 105°C ± 2 wit DC and ripple product should result should n <criteria> The characteria Leakage</criteria>	EC60384 h DC bia e peak v l be teste neet the t	4-4No.4. as voltage roltage sh ad after 10 following 1 meet th	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin	per anot e measur s, The ca ated ripp acceed the overing t g require 4.3 shall	her 1000 ed at 120 pacitor is le curren e rated w ime at at <u>ments.</u> be satisf	μ F for Z Hz. s stored a t for Tab zorking v mospher	Z-40°C/. at a temp ble 1. (T voltage)	Z+20°C. Derature o The sum o Then the
4.7	life	Condition> According to I 105°C ± 2 wit DC and ripple product should result should n <criteria> The characteria Leakage</criteria>	EC60384 h DC bia e peak v l be teste neet the t istic shal e current	4-4No.4. as voltage roltage sh ad after 10 following 1 meet th	Add 1.0 nce shall be 13 method e plus the r nall not ex 6 hours rec g table: <u>e followin</u> Value in	per anot e measur s, The ca ated ripp ceed the overing t g require 4.3 shall 25% of	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisf initial va	μ F for Z Hz. s stored a t for Tab vorking v mospher ied	Z-40°C/ at a temp ble 1. (T voltage) ic condi	Z+20°C. berature o The sum o Then the tions. The
4.7	life	Condition> According to I 105°C ± 2 wit DC and ripple product should result should n <criteria> The characteri Leakage Capacit</criteria>	EC60384 h DC bia e peak v l be teste neet the f istic shal e current ance Cha	4-4No.4. as voltage roltage sh ad after 10 following 1 meet th	Add 1.0 nce shall be 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within ±	per anot e measur s, The ca ated ripp cceed the overing t g require 4.3 shall 25% of than 200	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisf initial va 0% of the	μ F for Z Hz. s stored a t for Tab vorking v mospher ied ilue. specifie	Z-40°C/ at a temp ble 1. (T voltage) ic condi	Z+20°C. berature o The sum o Then the tions. The
4.7	life	<condition>According to I$105^{\circ}C \pm 2$ witDC and rippleproduct shouldresult should in<criteria>The characteriaLeakageCapacittan δ</criteria></condition>	EC60384 h DC bia e peak v l be teste neet the f istic shal e current ance Cha	4-4No.4. as voltage roltage sh ad after 10 following 1 meet th	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec g table: e followin Value in Within ± Not more	per anot e measur s, The ca ated ripp cceed the overing t g require 4.3 shall 25% of than 200	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisf initial va 0% of the	μ F for Z Hz. s stored a t for Tab vorking v mospher ied ilue. specifie	Z-40°C/ at a temp ble 1. (T voltage) ic condi	Z+20°C. berature o The sum o Then the tions. The
4.7	life	<condition>According to I$105^{\circ}C \pm 2$ witDC and rippleproduct shouldresult should in<criteria>The characteriaLeakageCapacittan δ</criteria></condition>	EC60384 h DC bia e peak v l be teste neet the f istic shal e current ance Cha	4-4No.4. as voltage roltage sh ad after 10 following 1 meet th	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec g table: e followin Value in Within ± Not more	per anot e measur s, The ca ated ripp cceed the overing t g require 4.3 shall 25% of than 200	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisf initial va 0% of the	μ F for Z Hz. s stored a t for Tab vorking v mospher ied ilue. specifie	Z-40°C/ at a temp ble 1. (T voltage) ic condi	Z+20°C. berature o The sum o Then the tions. The
4.7	life	<condition>According to I$105^{\circ}C \pm 2$ witDC and rippleproduct should result the result should result should</condition>	EC60384 h DC bia e peak v l be teste neet the f istic shal e current ance Cha ance	4-4No.4. as voltage roltage sh ad after 10 following 1 meet th t ange stored wi	Add 1.0 nce shall be 13 method e plus the r nall not ex 6 hours rec g table: e followin Value in Within ± Not more There sha	per anot e measur s, The ca ated ripp acceed the overing t <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>than 200</u> <u>ates no</u> <u>ge applie</u>	her 1000 ed at 120 pacitor is le curren e rated w ime at at <u>ments.</u> <u>be satisf</u> <u>initial va</u> <u>0% of the</u> <u>leakage of</u> ed at a te	P F for Z PHZ. S stored a t for Tab yorking v mospher ied ied alue. e specifie of electro mperatur	Z-40°C/ at a temp ole 1. (T voltage) ic condi ic condi ed value. hyte.	$Z+20^{\circ}C.$ berature o The sum o Then the tions. The $\pm 2^{\circ}C$ fo
4.7	life	<condition>According to I$105^{\circ}C \pm 2$ witDC and rippleproduct should result the result should result should result the result should result should result the result should result the result should result the result should result should result the result should result should result should result should result sho</condition>	EC60384 h DC bia e peak v l be teste neet the f istic shal e current ance Cha ance are then s	4-4No.4. as voltage voltage sh ad after 10 following 1 meet th t ange stored wi owing thi	Add 1.0 nce shall be 13 method e plus the r hall not ex 6 hours rec g table: <u>e followin</u> Value in Within <u>±</u> Not more There sha	per anot e measur s, The ca ated ripp acceed the overing t <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>than 200</u> Ill be no ge applic ne capaci	her 1000 ed at 120 pacitor is le curren e rated w ime at at <u>ments.</u> be satisf initial va 0% of the leakage of ed at a te tors shal	P F for Z PHZ. S stored a t for Tab yorking v mospher ied alue. e specifie of electro mperatur l be removed	Z-40°C/ at a temp ole 1. (T voltage) ic condi ic condi	$Z+20^{\circ}C.$ berature o The sum o Then the tions. The $5\pm 2^{\circ}C$ fo om the tes
4.7	life test	<condition>According to I$105^{\circ}C \pm 2$ withDC and rippleproduct should result the result should result should result the result should result should result the result should result the result should result the result should result the result should result s</condition>	EC60384 h DC bia e peak v l be teste neet the f istic shal e current ance Cha ance are then s urs. Follo be allowe	4-4No.4. as voltage voltage sh ad after 10 following 1 meet th t ange stored wi owing thi ed to stal	Add 1.0 nce shall be 13 method e plus the r hall not ex 6 hours rec g table: <u>e followin</u> Value in Within ± Not more There sha th no volta is period th bilized at	per anot e measur s, The ca ated ripp cceed the overing t <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>than 200</u> ill be no ge applie the capacitor	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments. be satisf initial va be satisf initial va v% of the leakage of ed at a te tors shal uperature	 µ F for Z n F for Z	z-40°C/ at a temp ole 1. (T voltage) ic condi ic	$Z+20^{\circ}C.$ berature o The sum o Then the tions. The $5\pm 2^{\circ}C$ fo om the tes Next the
	life test Shelf	<condition> According to I 105°C ± 2 wit DC and ripple product should result should in <criteria> The characterit Leakage Capacit tan δ Appear<condition> The capacitors a 1000+48/0 how chamber and b shall be connected</condition></criteria></condition>	EC60384 h DC bia e peak v l be teste neet the t astic shal e current ance Cha ance are then s urs. Follo be allowe	4-4No.4. as voltage voltage sh ad after 10 following <u>1 meet th</u> ange stored wi owing thi ed to stal a series	Add 1.0 nce shall be 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>±</u> Not more There sha is period the bilized at limiting rec	per anot e measur s, The ca ated ripp ceed the overing t g require 4.3 shall 25% of than 200 Ill be no ge applie the capaci coom ten esistor(1k	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisf initial va 0% of the leakage of ed at a te tors shal perature $\pm 100 \Omega$	 µ F for Z µ F for Z µ F for Z µ Hz. s stored a t for Tab vorking v mospher ied alue. alue. bf electron mperatur l be remained a for 4~8) with E 	z-40°C/ at a temp ble 1. (T voltage) ic condi ic condi ic condi ed value. hyte. re of 105 oved fro boved fro D.C. rate	$z+20^{\circ}C.$
4.7	life test Shelf life	<condition>According to I$105^{\circ}C \pm 2$ witDC and rippleproduct shouldresult should in<criteria>The characteritLeakageCapacittan δAppears<condition>The capacitors a$1000+48/0$ horchamber and bshall be conneapplied for 300</condition></criteria></condition>	EC60384 h DC bia e peak v l be teste neet the f istic shal e current ance Cha ance are then s urs. Follo be allowe ected to min. Afte	4-4No.4. as voltage voltage sh ad after 10 following <u>1 meet th</u> ange stored wi owing thi ed to stal a series	Add 1.0 nce shall be 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>±</u> Not more There sha is period the bilized at limiting rec	per anot e measur s, The ca ated ripp ceed the overing t g require 4.3 shall 25% of than 200 Ill be no ge applie the capaci coom ten esistor(1k	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisf initial va 0% of the leakage of ed at a te tors shal perature $\pm 100 \Omega$	 µ F for Z µ F for Z µ F for Z µ Hz. s stored a t for Tab vorking v mospher ied alue. alue. bf electron mperatur l be remained a for 4~8) with E 	z-40°C/ at a temp ble 1. (T voltage) ic condi ic condi ic condi ed value. hyte. re of 105 oved fro boved fro D.C. rate	$z+20^{\circ}C.$
	life test Shelf	<condition> According to I 105°C ± 2 wit DC and ripple product should result should in <criteria> The characterit Leakage Capacit tan δ Appear<condition> The capacitors a 1000+48/0 how chamber and b shall be connected</condition></criteria></condition>	EC60384 h DC bia e peak v l be teste neet the f istic shal e current ance Cha ance are then s urs. Follo be allowe ected to min. Afte	4-4No.4. as voltage voltage sh ad after 10 following <u>1 meet th</u> ange stored wi owing thi ed to stal a series	Add 1.0 nce shall be 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>±</u> Not more There sha is period the bilized at limiting rec	per anot e measur s, The ca ated ripp ceed the overing t g require 4.3 shall 25% of than 200 Ill be no ge applie the capaci coom ten esistor(1k	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisf initial va 0% of the leakage of ed at a te tors shal perature $\pm 100 \Omega$	 µ F for Z µ F for Z µ F for Z µ Hz. s stored a t for Tab vorking v mospher ied alue. alue. bf electron mperatur l be remained a for 4~8) with E 	z-40°C/ at a temp ble 1. (T voltage) ic condi ic condi ic condi ed value. hyte. re of 105 oved fro boved fro D.C. rate	$z+20^{\circ}C.$
	life test Shelf life	<condition>According to I$105^{\circ}C \pm 2$ witDC and rippleproduct shouldresult should in<criteria>The characteritLeakageCapacittan δAppears<condition>The capacitors a$1000+48/0$ horchamber and bshall be conneapplied for 300</condition></criteria></condition>	EC60384 h DC bia e peak v l be teste neet the f istic shal e current ance Cha ance are then s urs. Follo be allowo ected to min. Afte	4-4No.4. as voltage voltage sh ad after 10 following <u>1 meet th</u> ange stored wi owing thi ed to stal a series	Add 1.0 nce shall be 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>±</u> Not more There sha is period the bilized at limiting rec	per anot e measur s, The ca ated ripp ceed the overing t g require 4.3 shall 25% of than 200 Ill be no ge applie the capaci coom ten esistor(1k	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisf initial va 0% of the leakage of ed at a te tors shal perature $\pm 100 \Omega$	 µ F for Z µ F for Z µ F for Z µ Hz. s stored a t for Tab vorking v mospher ied alue. alue. bf electron mperatur l be remained a for 4~8) with E 	z-40°C/ at a temp ble 1. (T voltage) ic condi ic condi ic condi ed value. hyte. re of 105 oved fro boved fro D.C. rate	$z+20^{\circ}C.$
	life test Shelf life	<condition>According to I$105^{\circ}C \pm 2$ witDC and rippleproduct shouldresult should in<criteria>The characteritLeakageCapacittan δAppears<condition>The capacitors a$1000+48/0$ horchamber and bshall be conneapplied for 300</condition></criteria></condition>	EC60384 h DC bia e peak v l be teste neet the f istic shal e current ance Cha ance are then s urs. Follo be allowo ected to min. Afte	4-4No.4. as voltage voltage sh ad after 10 following <u>1 meet th</u> ange stored wi owing thi ed to stal a series	Add 1.0 nce shall be 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>±</u> Not more There sha is period the bilized at limiting rec	per anot e measur s, The ca ated ripp ceed the overing t g require 4.3 shall 25% of than 200 Ill be no ge applie the capaci coom ten esistor(1k	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisf initial va 0% of the leakage of ed at a te tors shal perature $\pm 100 \Omega$	 µ F for Z µ F for Z µ F for Z µ Hz. s stored a t for Tab vorking v mospher ied alue. alue. bf electron mperatur l be remained a for 4~8) with E 	z-40°C/ at a temp ble 1. (T voltage) ic condi ic condi ic condi ed value. hyte. re of 105 oved fro boved fro D.C. rate	$z+20^{\circ}C.$

		<criteria> The observatoristic shall most t</criteria>	the following requirements
		The characteristic shall meet Leakage current	Value in 4.3 shall be satisfied
	Shelf	Capacitance Change	Within $\pm 25\%$ of initial value.
4.8	life	tan δ	
	test		Not more than 200% of the specified value.
		Appearance	There shall be no leakage of electrolyte.
		1	stored more than 1 year, the leakage current may e through about 1 k Ω resistor, if necessary.
			e 15~35℃.
		<pre><criteria></criteria></pre>	μ ^μ Ι)
4.9	Surge	Leakage current	Not more than the specified value.
т.)	test	Capacitance Change	Within $\pm 15\%$ of initial value.
		tan δ	Not more than the specified value.
		Appearance	There shall be no leakage of electrolyte.
		Attention:	There shan be no reakage of electrolyte.
		over voltage as often applied Condition> The following conditions shaped	Il be applied for 2 hours in each 3 mutually
4.10	Vibration test	perpendicular directions. Vibration frequency ra Peak to peak amplitude Sweep rate Mounting method:	nge : 10Hz ~ 55Hz : 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute greater than 12.5mm or longer than 25mm must be fixed Within 30°
		<criteria> After the test, the following i Inner construction</criteria>	

Vanaian	01	D	0
Version	01		8

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

4.11	Solderability test	<condition>The capacitor shall be tested under the following conditions:Soldering temperature: 245±3°CDipping depth: 2mmDipping speed: 25±2.5mm/sDipping time: 3±0.5s<criteria>Coating qualityA minimum of 95% of the surface being immersed</criteria></condition>
4.12	Resistance to solder heat test	<condition> Terminals of the capacitor shall be immersed into solder bath at 260 ± 5 °C for $10\pm$ 1 seconds or 400 ± 10 °C for 3_{-0}^{+1} seconds to $1.5\sim2.0$mm from the body of capacitor . Then the capacitor shall be left under the normal temperature and normal humidity for $1\sim2$ hours before measurement.<criteria>Leakage currentNot more than the specified value. Capacitance ChangeWithin $\pm 10\%$ of initial value.tan δNot more than the specified value.AppearanceThere shall be no leakage of electrolyte.</criteria></condition>
4.13	Change of temperature test	<condition>Temperature Cycle:According to IEC60384-4No.4.7methods, capacitor shall be placed in an oven, the condition according as below:<math display="block">\hline TemperatureTime(1)+20°C(1)+20°C≤ 3 Minutes (2)Rated low temperature (-40°C) (-25°C)(2)Rated low temperature (-40°C) (-25°C)30 ± 2 Minutes (3)Rated high temperature (+105°C)(1) to (3)=1 cycle, total 5 cycleCriteria>The characteristic shall meet the following requirement</math></condition>
4.14	Damp heat test	<condition> Humidity Test: According to IEC60384-4No.4.12 methods, capacitor shall be exposed for 500 ± 8 hours in an atmosphere of $90 \sim 95\%$R H .at 40 ± 2°C, the characteristic change shall meet the following requirement.<criteria>Leakage currentNot more than the specified value. Capacitance Change Within $\pm 20\%$ of initial value. tan δ Not more than 120% of the specified value.Image: AppearanceThere shall be no leakage of electrolyte.</criteria></br></condition>

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

4.16 Maximum permissible (ripple current) 4.16 Maximum $p_{errmissible}$ ripple	4.15	Vent test	<condition>The following test only apply to those products with vent products at diameter $\ge \emptyset 6.3$with vent.D.C. testThe capacitor is connected with its polarity reversed to a DC power source. Then a current selected from below table is applied.<table 3="">$\overline{\text{Diameter (mm)} \ DC \ Current (A)}}{22.4 \ or \ less \ 1}$Over 22.4 \ 10<criteria>The vent shall operate with no dangerous conditions such as flames or dispersion of</criteria></table></condition>
	4.16	permissible (ripple	<condition>The maximum permissible ripple current is the maximum A.C current at 120Hz and can be applied at maximum operating temperature Table-1The combined value of D.C voltage and the peak A.C voltage shall not exceed the rated voltage and shall not reverse voltage.Frequency Multipliers:$\boxed{Coefficient}$$50$$120$$300$$1k$$100k$$15~33$$0.45$$0.55$$0.70$$0.90$$1.00$$39~300$$0.60$$0.75$$0.90$$0.98$$1.00$</condition>

Version 01 Page 10

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances
	Cadmium and cadmium compounds
Heavy metals	Lead and lead compounds
ficavy metals	Mercury and mercury compounds
	Hexavalent chromium compounds
	Polychlorinated biphenyls (PCB)
Chloinated	Polychlorinated naphthalenes (PCN)
organic	Polychlorinated terphenyls (PCT)
compounds	Short-chain chlorinated paraffins(SCCP)
	Other chlorinated organic compounds
D · (1	Polybrominated biphenyls (PBB)
Brominated	Polybrominated diphenylethers(PBDE) (including
organic	decabromodiphenyl ether[DecaBDE])
compounds	Other brominated organic compounds
Tributyltin comp	pounds(TBT)
Triphenyltin con	npounds(TPT)
Asbestos	
Specific azo con	npounds
Formaldehyde	
Beryllium oxide	
Beryllium copp	ber
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)
Hydrofluorocarb	oon (HFC), Perfluorocarbon (PFC)
Perfluorooctane	sulfonates (PFOS)
Specific Benzoti	riazole

Version 01		Page	11
------------	--	------	----

Attachment: Application Guidelines

1.Circuit Design

(2)

- 1.1 Operating Temperature and Frequency
 - Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent se Effects of frequency on electrical parameters
 - Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tand increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy

See the file: Life calculation of aluminum electrolytic capacitor

1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

1.5 Capacitor Mounting Considerations

(1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01 Page 12

(6) Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite. (7) Circuit Board patterns Under the Capacitor Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short. (8) Screw Terminal Capacitor Mounting Do not orient the capacitor with the screw terminal side of the capacitor facing downwards. Tighten the terminal and mounting bracket screws within the torque range specified in the specification. 1.6 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows. (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths (2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths. 1.7 The Product endurance should take the sample as the standard. 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling. 1.9 Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor. The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures. CAUTION! Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use. (1) Provide protection circuits and protection devices to allow safe failure modes. (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure. **2.**Capacitor Handling Techniques 2.1 Considerations Before Using (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment. (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k\Omega$. (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$. (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors. (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. 2.2 Capacitor Insertion (1) Verify the correct capacitance and rated voltage of the capacitor. (2) Verify the correct polarity of the capacitor before inserting. (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection. 2.3 Manual Soldering (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less. (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal. (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads. (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve. 2.4 Flow Soldering (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result. (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.

- (3) Do not allow other parts or components to touch the capacitor during soldering.
- 2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version 01	Page	13
------------	------	----

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning

Acetone

- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- : could attack and dissolve the aluminum case. Alkali solvents
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
 - : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.
- 2.8 Mounting Adhesives and Coating Agents
 - When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

- 3.1 Environmental Conditions
 - Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100° C temperatures. If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
- - If electrolyte or gas is ingested by month, gargle with water.
- If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

Version	01	Page	14

The capacitor shall be not use in the following condition:

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.